Embeddings turn text into numeric vectors you can store in a vector database, search with cosine similarity, or use in RAG pipelines. The vector length depends on the model (typically 384–1024 dimensions).
Recommended models
Generate embeddings
Use /api/embed with a single string.
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": "The quick brown fox jumps over the lazy dog."
}'
The /api/embed endpoint returns L2‑normalized (unit‑length) vectors.
Generate a batch of embeddings
Pass an array of strings to input.
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": [
"First sentence",
"Second sentence",
"Third sentence"
]
}'
Tips
- Use cosine similarity for most semantic search use cases.
- Use the same embedding model for both indexing and querying.